
Chaincode Event Replay
Version 1.2 (git/design-doc/blockchain/commons/events/), 2024-06-03

Table of content
Introduction. 1

Summary . 1

Event Replay . 1

Event Replay Subscription . 1

Few things to consider. 2

Handling of event double processing . 3

Approach 1 . 3

Approach 2 . 4

Introduction
The document describes how to replay the past chaincode events when needed and possible
approaches to handle the double processing of events.

Summary
There can be scenarios where event subscribed callBack client have missed the event and
processing of the particular event due to reasons like auth issue, service unavailability, processing
error etc. Most of these cases should be handled by OBP reliable event delivery by setting the
proper value to the attribute maxCallbackRetry during the subscription. Events will be retried
starting with 1 second internal, following exponential backoff policy until it reaches 120 seconds (1,
2, 4, 8 … 120, 120, 120) and continue to retry every 120 seconds until event is delivered successfully
or maxCallbackRetry count is exhausted

In the cases, where maxCallbackRetry is exhausted, or HTTP response code returned from the client
is non retriable, event replay methods can be considered with caution.

Event Replay
NOTE

There are different type of event subscriptions (transaction, block, filteredblock, chaincode). In
this document, we focus only on chaincode type.

Event Replay Subscription
To replay the past events, we need to create a new subscription by passing 2 extra attributes.

NOTE

We cannot alter the existing subscription

{
 "type": "chaincode",
 "callbackURL": "https://callback.url",
 "chaincode": "chaincode_name",
 "expires": "1h",
 "event": ".*_TMAID",
 "seek":"from",
 "block":2730,
 "maxCallbackRetry": 15
}

1. seek - Param indicates which Blocks to be re-played. Valid options for this attributes are listed
below

a. oldest: delivers all blocks from the oldest block

1

b. newest: delivers the newest block

c. from: delivers from the block number specified for the block parameter.

2. block - This attribute is valid when the attribute value of`seek` is from

Most relevant attributes for us are

• seek:"from"

• block: integer representing the starting block for event replay
In above sample subscription payload, events would be delivered starting from the block 2730,
inclusive.

Similarly, for private events,

{
 "type": "privateChaincode",
 "callbackURL": "https://callback.url",
 "chaincode": "chaincode_name",
 "expires": "1h",
 "event": ".*",
 "seek":"from",
 "block":2730,
 "maxCallbackRetry": 15,
 "role":"09456f24-a42f-4d86-8984-81ac936ef2e8"
}

NOTE

Unlike public events, private events can only be replayed if the subscriber is actually the
recipient of chaincode events to be replayed.

Few things to consider
1. It is recommended to keep one subscription per callBack client (no benefit of having multiple

subscriptions for the same callBack client)

2. There is no restriction to re-use the same callBackURL for the replay subscription. When the
same callBackURL is used, both the past events to be replayed and the new events generated
would be delivered to the same callBack client

3. It is client’s responsibility to implement the logic to avoid double processing of the same event
twice if not intended

4. In case the new callBackURL is used, all the past events will be delivered to new callBack client

5. Multiple blockchain transactions can be part of the same Block which in turn indicates that
multiple events may or may not be part of the same BlockNumber so to identify a unique event,
we must consider BlockNumber and TxnID present in the event payload.

2

Handling of event double processing
1. Example scenario of events delivery when replay is in effect

Sequence BlockNumber,TxnID Scenario

1 100,0 Subscribed

2 101,1 Normal flow

3 103,1 Normal flow

4 106,1 Normal flow

5 106,2 Same block different TxnID to
be processed

6 125,1 Issue with callBack client and
events are dropped for some
blocks [106,107,108,109]. Block
125 is processed after issue
recovery

7 106,1 Existing subscription is deleted.
A new replay subscription is
created from
BlockNumber=106. This is a
scenario where we are handling
the already processed event -
double processing

8 106,2 Double processing, replay event

9 106,3 Normal flow, replay event

10 107,1 Normal flow, replay event

11 108,1 Normal flow, replay event

12 109,1 Normal flow, replay event

13 125,1 Double processing, replay event

14 127,1 Latest event block is caught up

1. From the above example scenario, it is evident that callBackClient should have the capability to
handle double processing of same events when events are replayed

Approach 1
• Design the callBack client to persist BlockNumber and TxnID in the event

• Delete the old subscription which is not functioning anymore.

• Create the new subscription with seek and from attributes by passing the BlockNumber from
where the events to be replayed

3

• For every new event received,

Fetch the `BlockNumber` and `TxnID` present in the event and compare the values
with persisted list of `BlockNumber` and `TxnID`
if Found
 Skip processing of the event
if Not Found
 Process the event

Approach 2
• Design the callBack client process the events in an idempotent manner. Meaning, re-processing

of the same event doesn’t have any implication on callBackClient/down systems.

• Delete the old subscription which is not functioning anymore.

• Create the new subscription with seek and from attributes by passing the BlockNumber from
where the events to be replayed

• For every event received,

Process the event

4

	Chaincode Event Replay
	Table of content
	Introduction
	Summary
	Event Replay
	Event Replay Subscription

	Few things to consider
	Handling of event double processing
	Approach 1
	Approach 2

